Step of Proof: quot_elim
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
quot
elim
:
T
:Type,
E
:(
T
T
). EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
(
a
,
b
:
T
. (
a
=
b
)
(
E
(
a
,
b
)))
latex
by ((GenUnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
E
:
T
T
C1:
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
C1:
4.
a
:
T
C1:
5.
b
:
T
C1:
6.
a
=
b
C1:
E
(
a
,
b
)
C
2
:
C2:
1.
T
: Type
C2:
2.
E
:
T
T
C2:
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
C2:
4.
a
:
T
C2:
5.
b
:
T
C2:
6.
E
(
a
,
b
)
C2:
a
=
b
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
P
Q
,
P
&
Q
,
P
Q
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
S
T
Lemmas
equiv
rel
wf
,
squash
wf
,
quotient
qinc
,
quotient
wf
origin